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In auralization of room sound fields, most conventional approaches base their computations on geometrical-acoustics assumptions,
which fail at lower frequencies (or for scattering from small facets) due to the neglect of edge diffraction and to coarse approximations
of surface scattering, e.g., approximations based on Lambert-scattering models. This paper investigates the physical and subjective
effects of three main approaches to modeling surface scattering for inclusion in transient room impulse responses for auralization, as
the impulse response is the temporal characteristic of the roomís acoustical quality. These scattering models include the following:
Lambert surface scattering from rough surfaces, edge-diffraction, and boss surface-scattering. In particular, a parametric approach to
modeling edge-diffraction is developed and compared with the high-accuracy model; the parametric approach uses four output
parameters to collectively model the physical behavior of edge diffraction and retains the phase effects that reproduce the basic first-
order scattering behavior from finite facets.

Keywords:  auralization, scattering, diffraction, edge diffraction, perceptual modeling, physical modeling

INTRODUCTION
For the acoustical analysis and design of rooms, acousticians
often rely on room-acoustics simulation software based on
geometrical-acoustics principles, i.e., that acoustical
wavefronts can be modeled as rays (or propagation from image
sources) that reflect from faceted surfaces, thus yielding the
temporal pattern of reflection known as the echogram. Such
tools are attractive because they offer calculation of room-
acoustics parameters from computed echograms. In addition,
by assigning phase (e.g., minimum phase) to reflections, many
typical commercial algorithms can generate impulse responses
for auralization, i.e., the binaural simulation of a virtual or
physical acoustic environment.
Among the approximations inherent to such programs,
however, one of the most significant is the treatment of surface
scattering. Non-specular surface scattering can essentially be
divided into two main types: edge diffraction and surface
scattering, which both affect the perceived coloration and
spaciousness of a given sound field [1,2]. Inadequate modeling
of surface scattering can lead to inaccuracies in auralization.
Depending on the required level of accuracy, however, different
scattering models may be appropriate. This paper discusses
various numerical models, as well as their suitability for a given

application. Although there are several algorithms that may
be used to compute room sound fields, this discussion focuses
on specific time-domain models for edge-diffraction and boss-
scattering [3-5] that are well-suited to complementing current,
most commonly used algorithms that are based on geometrical
acoustics principles. Moreover, this paper focuses more on
the effects of the physical and subjective phenomena than on
the numerical models themselves.

1. LAMBERT SCATTERING MODELS
Geometrical-acoustics models have limited utility but still give
useful information at higher frequencies where the wavelength
is less than about 1/10 the smallest projected dimension of a
reflecting surface facet. In these models the reflection energy
is determined by a frequency-dependent absorption
coefficient (approximated typically as a random-incidence,
angular-independent value). The calculated reflection density
depends also on the assumed wall scattering coefficient, where
the scattering is commonly modeled using a tessellation of
Lambert sources that simulate a rough scattering surface [6,
7].
     Lambert-models for surface scattering are useful for
approximately simulating scattering from randomly rough
surfaces; moreover, to predict basic reverberation decays,a) Electronic mail: rrtorres@rpi.edu
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Lambert-scattering models yield significant improvements
over algorithms based on geometrical acoustics without any
scattering models at all [8-12].
     For computing higher-resolution impulse responses for
auralization, however, Lambert-scattering models can only
represent gross effects of surface scattering and not fine
details that create, e.g., audible differences in timbre. Some
major limitations of a Lambert-based scattering model are that
(1) it does not simulate well the complex scattering directivity
from two-dimensional scattering geometries such as edges of
finite planes and cylinders, and (2) it neglects phase, thus
neglecting interference effects between specular and non-
specular scattering, whose sum constitutes the total surface
scattering at a receiver position in a room. This latter effect is
especially important at non-specular angles of surface
scattering to the receiver. Although it would be clearly
advantageous to improve auralization algorithms to model
phase more accurately both in the absorption coefficient and

in the surface scattering, the discussion of this paper will limit
itself to the latter.
     Nevertheless, despite its oversimplification of surface
scattering, Lambert-scattering can still function as a
perceptually-based approximation to surface scattering where
phase is neglected. To illustrate the effects of changing the
Lambert-scattering coefficient in a room, Figure 1 plots the
computed impulse response of a concert hall (from Ref. [1])
and specific loudness spectrogram (vs. time and critical band,
i.e., the bandwidth resolution of human hearing [14]) for two
different values of the Lambert scattering coefficient (10%
and 60%) in the frequency region covered by the 125-250 Hz
octave bands. The plots illustrate how the increase in the
scattering coefficient decreases the amplitude of early
reflections, time-smears the non-specular scattered energy,
and changes the relative balance between direct, reflected,
and reverberant energy.
     Figure 2 shows previous results of listening tests [1] that
investigated the perceived difference in changes of the Lambert
scattering coefficient from 10% to 60% over different frequency
ranges. These figures showed that changes in scattering
coefficient are audible in all frequency regions tested, where
the relative audibility is related to the input signal. Moreover,
Ref [1] showed that for perceptual (i.e., aural) accuracy,
scattering must be treated with frequency dependence (not all
auralization programs do this), and with models appropriate to
each frequency (see also [13]).

Fig. 1. The effects of changing the scattering coefficient are
depicted by two pairs of plots showing the impulse response
(band-pass filtered at the 125- and 250-Hz octave bands) and
the specific loudness vs. time (500 ms) and critical band.
Figures (a) and (b) correspond to scattering coefficients of
10% and 60%, respectively. When the scattering coefficient
increases, as in Fig. 1(b), the reflection-peaks in the impulse
response decrease. The loudness level contours in Fig. 1(b)
also reveal the conversion of specularly reflected energy to
diffusely scattered energy.

(a)

(b)

Fig. 2. Results from pair comparison listening tests, where
subjects rated the ì Perceived differencesî  resulting from
changes in Lambert scattering coefficients from 10% to 60%.
[1] Subjects were not told how the auralizations differed, but
they were given reference auralizations as ì anchor pointsî
that represented values of 1 (1 = clear audible difference; 0 =
no audible difference).
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2.  EDGE DIFFRACTION

2.1. High-accuracy computations

Edge diffraction is the first major correction to geometrical
acoustics and the corresponding assumption that all reflecting
surfaces are rigid and infinite in extent [2,3]. Figure 3 shows a
performance hall environment (at the Music Conservatory in
Gothenburg, Sweden) with several dedicated reflector panels,
modeled as finite-size facets whose scattering is significantly
non-specular at long wavelengths.
     In order to minimize the computational demands of including
scattering in auralization, it is appropriate to study how many
orders of scattering need to be included. For this purpose,
studying edge diffraction is especially appropriate, since edge
diffraction can be considered an elementary form of surface
scattering. In a previous study incorporating edge-diffraction
computations and listening tests [2], it was found that higher
orders and combinations of edge diffraction components were
not usually as significant as first-order diffraction components
when the receiver was visible to the source. Additionally, the
total diffraction effects within the audible frequency range
were relatively small above about 150 Hz. The reason for this
was that the reference geometry (a large concert-hall
stagehouse) was conservatively composed of large flat walls
whose dimensions were larger than most of the wavelengths
of interest. This was ìconservativeî in the sense that only the
longest wavelengths of interest would give rise to significant
edge-diffractions, and the study investigated whether in such
cases the diffraction was audible in listening tests. The results
interestingly showed that these diffraction effects were still

audible for various input signals.
     More realistic reflecting surfaces in rooms, however, do
not primarily consist of large, bare walls but more often include
smaller-scale surface irregularities, e.g., facets for which audible
wavelengths are typically a similar order or larger. A variety of
such elements is shown in Fig. 3, where the boundaries of
various reflecting surfaces gives rise to edge diffraction, or
scattering from the edges of the finite-size panels. To most
clearly illustrate the effect of calculating varying orders of
diffraction, we initially consider the scattering (reflection +
diffraction) from a single rectangular panel. Figure 4 shows an
elevation of the source-panel-receiver configuration.
     Figure 5 shows the difference between calculations (using
the edge-diffraction model by Svensson et al. [3]) including
up to first-order and calculations including up to second-order
diffraction. It is clear that second-order diffraction must be
included when the wavelength is approximately greater than
five times the projected width (i.e., at low frequencies) and

Fig.  3. Scattering from edges of finite planes in the conservatory
Musikhogskolan, Goteborg, Sweden. (Photo: M. Kleiner)

Fig. 4. Geometry of edge-diffraction computation.

Fig. 5. Error in neglecting second- (and higher-) order
diffraction. When the wavelength exceeds approximately five
times the panel width, first-order diffraction computations
are insufficient, and one must compute higher orders of
diffraction.
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that successively higher orders are needed. However, within
and above the transition zone (indicated by dotted lines), first-
order diffraction appears adequate to model the total scattering
from the panel for this somewhat generic source-receiver
configuration.

2.2. Perceptual approximations to edge diffraction

One can construct perceptual approximations to edge
diffraction by describing (and then modeling) edge-diffraction
parametrically by physical phenomena. We do this by
computing simplified finite impulse response (FIR) filters, e.g.,
for medium-resolution virtual-reality applications. Our six input
parameters are the source and receiver positions (each
described by two cylindrical coordinates), the wedge angle
(e.g., θw = 0 corresponds to a knife-edge and θw = π to a half-
plane), and the wedge length. The four output parameters that
describe the diffraction are the level Ld, ì cutoff frequencyî  fc

of the diffraction (which resembles a low-pass filter, as depicted
in Fig. 6), slope m of the response above the cutoff frequency,
and the phase/polarity of the diffraction (which, for a given
finite plane, controls how the diffraction constructively or
destructively interferes with the specular reflection from that
plane). First-order diffraction drops off above the cutoff
frequency fc at a rate of about −3 dB/octave; higher orders
drop off at approximately −6 dB/octave, −9 dB/octave, etc.
     In particular we examine (1) the directivity functions of the
scattering around the edge, (2) the frequency spectra of this
scattering and the dependence on distance (to determine
whether it follows a far-field type of behavior), and (3) wedge
length (to determine the effect of the wedge at lower
frequencies/longer wavelengths).
     Figure 7 shows the directivity and polarity of the edge-
scattering functions as a function of angle from the edge of a
semi-infinite plane. There are three zones corresponding to
the existence of the direct sound (Zone I and II), specular
reflections (Zone I), and diffraction alone (in the Zone III

ì shadowî  region). The directivity plot and frequency
responses show that there are singularities in the computed
edge diffraction at the zone boundaries, but a continuous total
sound field when all pressure components, i.e., edge diffraction
components and specular components, are summed together.
The frequency spectra in Fig. 8 also show how the diffraction
resembles a low-pass filter to varying degrees depending on
the zone. In Fig. 8-10, the reference 0 dB signifies the level of a
specular (geometrical) reflection from the surface without
accounting for edge diffraction.
     The frequency response of the total scattering from the
panel (edge diffraction + specular reflection) is shown in Fig.
9. Even though the edge diffraction is discontinuous at the
zone boundaries of the sound field (i.e., the boundaries where
the specular reflection and direct sound disappear, respectively

Fig. 6. Illustration of simplified low-pass filters to
parametrically model edge-diffraction.

Fig. 7. Directivity and polarity of first-order edge diffraction.
The solid circles represent receiver positions R1 through R13
where the impulse response (including reflection and
diffraction) is calculated. The positive and negative signs refer
to the polarity/phase of the diffraction impulse response. Zones
I, II, and III refer to areas as described in the text.

Fig. 8. Frequency response of edge-diffraction as a function of
scattering angle at several receiver positions around the edge.
The labels R1 to R11 correspond to the receiver positions
depicted in Fig. 7.
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[2]), the total scattering shown here is smoothly varying, as
one would expect for a continuous sound field.
     The results in Fig. 10 show that longer wedges contribute
stronger edge diffraction at lower frequencies; therefore, when
using simplified description of edge diffraction, one cannot
neglect wedge length (e.g., as one does when using the
geometrical theory of diffraction). The computations for Fig.
10 were done for wedge lengths of a = 0.2 m, b = 0.3 m, c = 0.6

m, d = 1.05 m, e = 1.6 m, f = 2.4 m, g = 3.0 m. The wedge angle is
20 degrees, and the receiver position is at 60 degrees. This
effect (of greater edge diffraction for longer wedges) is typical
for various source positions.
     If one approximately models the edge-diffraction as a simple
low-pass FIR filter and superposes this with the specular
reflection, this approximation of the total scattering may be
compared to a higher accuracy computation. This comparison
is shown in Fig. 11. It is important that the polarity of the
diffraction impulse response is correct, since the total
scattering must reflect the correct interference among the
individual (direct, reflected, and diffracted) components. Figure
11 shows that the total scattering seems to be modeled
relatively well, with up to 3 dB errors for this source, receiver,
and edge configuration. This is an encouraging result, as it
demonstrates that one may feasibly use such simplified models
of edge diffraction for applications where the highest accuracy
is not required (e.g., for fast virtual-reality computations).

3.  BOSS-MODEL SURFACE SCATTERING

Edge-diffraction models are not optimized, however, to model
scattering from individual scatterers such as spheres. Such
scattering can be calculated using so-called boss models, where
a boss is simply a protuberance from a surface. We present
here some initial calculations and results in this area.
     Figure 12 shows the simulated listener orientation relative
to the two walls for which the scattering is calculated according
to Fig. 13. The non-specular scattering from the sphere is
calculated according to the image-implementation of the
classical solution for scattering from spheres [4,5], as

Fig.  9. Frequency response of total scattering (edge diffraction
+ specular reflection). Even though the edge diffraction is
discontinuous at the zone boundaries, the total scattering
shown here is smoothly varying, as one would expect for a
continuous sound field. The labels R1 to R6 correspond to the
receiver positions depicted in Fig. 7.

Fig. 10. Variation with wedge length: a = 0.2 m, b = 0.3 m, c =
0.6 m, d = 1.05 m, e = 1.6 m, f = 2.4 m, g = 3.0 m. Wedge angle
= 20 degrees; rec. angle = 60 degrees. The results show that
longer wedges contribute stronger edge diffraction at lower
frequencies; therefore, when using simplified description of
edge diffraction, one cannot neglect wedge length (e.g., as one
does when using the geometrical theory of diffraction).

Fig. 11. Frequency response of total scattering (reflection +
edge diffraction). The dotted lines represent the high-accuracy
solution; the solid lines depict the parametric approximation.
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illustrated in Fig. 13 for one hemispherical boss on an infinite
rigid plane. Here, the total sound field is regarded as a sum of
the direct sound pi

 and the scattered sound psc, which itself is
composed of the ì specularî  (image-like) reflection from the
flat plane pr and the ì non-specularî  boss-scattering of the
incident and reflected sound, pi

sc and pr
sc.

     The calculation details are as follows. The sphere diameters
were varied uniformly to be 0.1, 0.23, and 0.37 m. Only scattering
from two side walls (with areas 10 x 10 meters each and
separated by a 12 m distance) were calculated, with bosses
evenly spaced at densities of 2x3, 5x3, and 8x8 bosses per side
wall. As a third parameter, the boss positions were dithered in
the 8x8 case. The sound source was a point source, and the
point receiver was located 5 meters from one side wall and 7
meters from the other.
     Figures 14 and 15 show results from these calculations,
where only first-order non-specular scattering is included. In
particular, the early decay and level of the reverberation is
clearly dependent on the boss number and size.  Initial listening
tests (pair comparisons) with multi-dimensional scaling of the
results indicate that variations in either of these factors (boss
size and boss density) are statistically significant in causing
audible changes in the binaural room impulse response. One
should also recall that only first-order scattering was included
here (and the boss positions were relatively sparse with respect
to wavelength) and note that the inclusion of coupled
scattering (higher-order interactions) among bosses will also
affect the spectral and spatial character of the boss surface
scattering, especially as the bosses increase in number and
density (i.e., proximity to each other).

4. CONCLUSIONS AND FUTURE WORK

Construction of simplified scattering filters based on few

Fig. 12. Orientation of listener/receiver position for boss-
scattering calculation and auralizations. The listener was
positioned off axis between two walls with scattering bosses
(protuberances from the flat surface).

Fig. 13. The total scattering psc from a hemispherical boss is
modeled as the sum of three terms: the planar ″specular″
reflection pr, and the scattering of incident and reflected sound
pi

sc and pr
sc from a sphere with the same diameter.

Fig. 14. Early energy decay for various boss densities. The
ì number of bossesî  corresponds to the boss densities of 2x3,
5x3, and 8x8 bosses per side wall.

Fig. 15. Early energy decay for different boss sizes.
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parameters may make faster computation of edge diffraction
possible for virtual-reality, medium-resolution applications.
Future work will be needed to determine how to optimally
determine the parametrical outputs for the simplified diffraction
filters (e.g., using look-up tables or neural networks).
Additional numerical investigation and subjective testing is
also needed to determine how best to model parametrically
scattering from hemispherical bosses [15]. Finally, one should
investigate how to characterize spatial and timbral effects of
scattering and to what extent different amounts of reverberation
masks or otherwise affects such perceptual effects in the early
room impulse response. When one listens to continuous or
repetitive signals, the reverberation from an earlier part of the
input signal can mask a later part of the input signal, just as
reverberation can mask or muddle speech. In such a case, the
timbre (influenced by early reflections) of the voice is changed,
or at least partially masked, by increasing the reverberation. In
addition, when reverberation is present, the listener may
partially be distracted by the reverberation and not concentrate
as closely on the timbral and spatial effects of the early
reflections.
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